Improvement in the Accuracy of Matching by Different Feature Subspaces in Traffic Sign Recognition
A technique for recognizing traffic signs from an image taken with an in-vehicle camera has already been proposed as driver's drive assist. SIFT feature is used for traffic sign recognition, because it is robust to changes in scaling and rotating of the traffic sign. However, it is difficult to...
Gespeichert in:
Veröffentlicht in: | Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 2009/05/01, Vol.129(5), pp.893-900 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A technique for recognizing traffic signs from an image taken with an in-vehicle camera has already been proposed as driver's drive assist. SIFT feature is used for traffic sign recognition, because it is robust to changes in scaling and rotating of the traffic sign. However, it is difficult to process in real-time because the computation cost of the SIFT feature extraction and matching is expensive. This paper presents a method of traffic sign recognition based on keypoint classifier by AdaBoost using PCA-SIFT features in different feature subspaces. Each subspace is constructed from gradients of traffic sign images and general images respectively. A detected keypoint is projected to both subspaces, and then the AdaBoost employs to classy into whether the keypoint is on the traffic sign or not. Experimental results show that the computation cost for keypoint matching can be reduced to about 1/2 compared with the conventional method. |
---|---|
ISSN: | 0385-4221 1348-8155 |
DOI: | 10.1541/ieejeiss.129.893 |