Image of [Lambda]-adic Galois representations modulo p
Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see f...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2013-10, Vol.194 (1), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Inventiones mathematicae |
container_volume | 194 |
creator | Hida, Haruzo |
description | Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see fulltext.] for the canonical "weight" variable T. This fact appears to be deep, as it is almost equivalent to the vanishing of the [mu]-invariant of the Kubota-Leopoldt p-adic L-function and the anticyclotomic Katz p-adic L-function. Another key ingredient of the proof is the anticyclotomic main conjecture proven by Rubin/Mazur-Tilouine.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-012-0439-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1433790289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075847291</sourcerecordid><originalsourceid>FETCH-proquest_journals_14337902893</originalsourceid><addsrcrecordid>eNqNzb0KwjAUBeCLKFh_HsAt4By9SYoxs_gHjm4iJdpUKm1Tc9v3N4MP4HA4w3fgACwErgSiXhOilJKjiEmV4XoAiUiV5EIaPYQkMnJjBI5hQvRGjKhlAptzbV-O-YLdLrZ-5PbObV4-2dFWviQWXBscuaazXekbYrXP-8qzdgajwlbk5r-ewvKwv-5OvA3-0zvqsrfvQxMpi0dKG5Rbo_5bfQF2iTtn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433790289</pqid></control><display><type>article</type><title>Image of [Lambda]-adic Galois representations modulo p</title><source>SpringerNature Journals</source><creator>Hida, Haruzo</creator><creatorcontrib>Hida, Haruzo</creatorcontrib><description>Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see fulltext.] for the canonical "weight" variable T. This fact appears to be deep, as it is almost equivalent to the vanishing of the [mu]-invariant of the Kubota-Leopoldt p-adic L-function and the anticyclotomic Katz p-adic L-function. Another key ingredient of the proof is the anticyclotomic main conjecture proven by Rubin/Mazur-Tilouine.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-012-0439-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2013-10, Vol.194 (1), p.1</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hida, Haruzo</creatorcontrib><title>Image of [Lambda]-adic Galois representations modulo p</title><title>Inventiones mathematicae</title><description>Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see fulltext.] for the canonical "weight" variable T. This fact appears to be deep, as it is almost equivalent to the vanishing of the [mu]-invariant of the Kubota-Leopoldt p-adic L-function and the anticyclotomic Katz p-adic L-function. Another key ingredient of the proof is the anticyclotomic main conjecture proven by Rubin/Mazur-Tilouine.[PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNzb0KwjAUBeCLKFh_HsAt4By9SYoxs_gHjm4iJdpUKm1Tc9v3N4MP4HA4w3fgACwErgSiXhOilJKjiEmV4XoAiUiV5EIaPYQkMnJjBI5hQvRGjKhlAptzbV-O-YLdLrZ-5PbObV4-2dFWviQWXBscuaazXekbYrXP-8qzdgajwlbk5r-ewvKwv-5OvA3-0zvqsrfvQxMpi0dKG5Rbo_5bfQF2iTtn</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Hida, Haruzo</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>Image of [Lambda]-adic Galois representations modulo p</title><author>Hida, Haruzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_14337902893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hida, Haruzo</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hida, Haruzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image of [Lambda]-adic Galois representations modulo p</atitle><jtitle>Inventiones mathematicae</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>194</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see fulltext.] for the canonical "weight" variable T. This fact appears to be deep, as it is almost equivalent to the vanishing of the [mu]-invariant of the Kubota-Leopoldt p-adic L-function and the anticyclotomic Katz p-adic L-function. Another key ingredient of the proof is the anticyclotomic main conjecture proven by Rubin/Mazur-Tilouine.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-012-0439-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2013-10, Vol.194 (1), p.1 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_1433790289 |
source | SpringerNature Journals |
title | Image of [Lambda]-adic Galois representations modulo p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20of%20%5BLambda%5D-adic%20Galois%20representations%20modulo%20p&rft.jtitle=Inventiones%20mathematicae&rft.au=Hida,%20Haruzo&rft.date=2013-10-01&rft.volume=194&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-012-0439-7&rft_dat=%3Cproquest%3E3075847291%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433790289&rft_id=info:pmid/&rfr_iscdi=true |