Image of [Lambda]-adic Galois representations modulo p
Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see f...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2013-10, Vol.194 (1), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p>=5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its mod p Galois representation contains an open subgroup of [InlineEquation not available: see fulltext.] for the canonical "weight" variable T. This fact appears to be deep, as it is almost equivalent to the vanishing of the [mu]-invariant of the Kubota-Leopoldt p-adic L-function and the anticyclotomic Katz p-adic L-function. Another key ingredient of the proof is the anticyclotomic main conjecture proven by Rubin/Mazur-Tilouine.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-012-0439-7 |