The Distributed Assembly Permutation Flowshop Scheduling Problem
Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2013-09, Vol.51 (17), p.5292-5308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2013.807955 |