On Abelian repetition threshold

We study the avoidance of Abelian powers of words and consider three reasonable generalizations of the notion of Abelian power to fractional powers. Our main goal is to find an Abelian analogue of the repetition threshold, i.e., a numerical value separating k-avoidable and k-unavoidable Abelian powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RAIRO. Informatique théorique et applications 2012-01, Vol.46 (1), p.147-163
Hauptverfasser: Samsonov, Alexey V., Shur, Arseny M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the avoidance of Abelian powers of words and consider three reasonable generalizations of the notion of Abelian power to fractional powers. Our main goal is to find an Abelian analogue of the repetition threshold, i.e., a numerical value separating k-avoidable and k-unavoidable Abelian powers for each size k of the alphabet. We prove lower bounds for the Abelian repetition threshold for large alphabets and all definitions of Abelian fractional power. We develop a method estimating the exponential growth rate of Abelian-power-free languages. Using this method, we get non-trivial lower bounds for Abelian repetition threshold for small alphabets. We suggest that some of the obtained bounds are the exact values of Abelian repetition threshold. In addition, we provide upper bounds for the growth rates of some particular Abelian-power-free languages.
ISSN:0988-3754
1290-385X
DOI:10.1051/ita/2011127