Detection of Financial Statement Fraud Using Evolutionary Algorithms
In this paper, we use a Genetic Algorithm (GA) and MARLEDA—a modern Estimation of Distribution Algorithm (EDA)—to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify u...
Gespeichert in:
Veröffentlicht in: | Journal of emerging technologies in accounting 2012-12, Vol.9 (1), p.71-94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use a Genetic Algorithm (GA) and MARLEDA—a modern Estimation of Distribution Algorithm (EDA)—to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify unseen corporate data observations than those of a traditional logistic regression model, and provide validity for detecting financial statement fraud with Evolutionary Algorithms (EAs) and FRBCs. Using ten-fold cross-validation, the GA and MARLEDA yield average training classification accuracy rates of 75.47 percent and 74.26 percent, respectively, and average validation accuracy rates of 63.75 percent and 64.46 percent, respectively. |
---|---|
ISSN: | 1554-1908 1558-7940 |
DOI: | 10.2308/jeta-50390 |