Detection of Financial Statement Fraud Using Evolutionary Algorithms

In this paper, we use a Genetic Algorithm (GA) and MARLEDA—a modern Estimation of Distribution Algorithm (EDA)—to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of emerging technologies in accounting 2012-12, Vol.9 (1), p.71-94
Hauptverfasser: Alden, Matthew E., Bryan, Daniel M., Lessley, Brenton J., Tripathy, Arindam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use a Genetic Algorithm (GA) and MARLEDA—a modern Estimation of Distribution Algorithm (EDA)—to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify unseen corporate data observations than those of a traditional logistic regression model, and provide validity for detecting financial statement fraud with Evolutionary Algorithms (EAs) and FRBCs. Using ten-fold cross-validation, the GA and MARLEDA yield average training classification accuracy rates of 75.47 percent and 74.26 percent, respectively, and average validation accuracy rates of 63.75 percent and 64.46 percent, respectively.
ISSN:1554-1908
1558-7940
DOI:10.2308/jeta-50390