Multimodal signals increase active space of communication by wolf spiders in a complex litter environment
Multimodal signals may compensate for environmental constraints on communication, as signals in different modalities vary in efficacy. We examined the influence of complex microhabitats on transmission of vibratory and visual signals of courting male Schizocosa ocreata wolf spiders (Araneae: Lycosid...
Gespeichert in:
Veröffentlicht in: | Behavioral ecology and sociobiology 2013-09, Vol.67 (9), p.1471-1482 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multimodal signals may compensate for environmental constraints on communication, as signals in different modalities vary in efficacy. We examined the influence of complex microhabitats on transmission of vibratory and visual signals of courting male Schizocosa ocreata wolf spiders (Araneae: Lycosidae) with laser Doppler vibrometry (LDV) and behavioral observations in lab and field. We measured maximum potential detection distance of visual and vibratory signals by females in laboratory mesocosms, recorded vibration signal attenuation on different substrates, and estimated transmission distances for male vibration signals in the field. We also determined effective line-ofsight visual detection distances in the field with laser distance measures. Together, these data were used to estimate the potential and effective active space of multimodal signals. LDV measures show leaves are highly conductive substrates for wolf spider vibratory signals compared to others (soil, wood, rock). For both visual and vibratory modes, lab estimates of maximum potential distance for signal transmission and detection (behavior studies) exceeded estimates of effective active space (signal attenuation, "vanishing point," and "line-of-sight" measures). Field estimates of transmission distance for signal modes overlap, such that in close range ( |
---|---|
ISSN: | 0340-5443 1432-0762 |
DOI: | 10.1007/s00265-013-1557-y |