The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations

We examine the global H i properties of galaxies in quarter billion particle cosmological simulations using gadget-2, focusing on how galactic outflows impact H i content. We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-09, Vol.434 (3), p.2645-2663
Hauptverfasser: Davé, Romeel, Katz, Neal, Oppenheimer, Benjamin D., Kollmeier, Juna A., Weinberg, David H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the global H i properties of galaxies in quarter billion particle cosmological simulations using gadget-2, focusing on how galactic outflows impact H i content. We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentum-driven outflows for larger galaxies and energy-driven outflows for dwarfs (σ < 75 km s−1). To obtain predicted H i masses, we employ a simple but effective local correction for particle self-shielding and an observationally constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an H i mass function whose faint-end slope of −1.3 agrees well with observations from the Arecibo Fast Legacy ALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in H i fraction versus halo mass, with smaller satellites and/or those in larger haloes more often being H i deficient. At a given stellar mass, H i content correlates with the star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive H i galaxies disappear and the mass function steepens. The global cosmic H i density conspires to remain fairly constant from z ∼ 5 → 0, but the relative contribution from smaller galaxies increases with redshift.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stt1274