Optimal Modeling and Filtering of Stochastic Time Series for Geoscience Applications

Sequences of observations or measurements are often modeled as realizations of stochastic processes with some stationary properties in the first and second moments. However in practice, the noise biases and variances are likely to be different for different epochs in time or regions in space, and he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-8
1. Verfasser: Blais, J. A. Rod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sequences of observations or measurements are often modeled as realizations of stochastic processes with some stationary properties in the first and second moments. However in practice, the noise biases and variances are likely to be different for different epochs in time or regions in space, and hence such stationarity assumptions are often questionable. In the case of strict stationarity with equally spaced data, the Wiener-Hopf equations can readily be solved with fast Fourier transforms (FFTs) with optimal computational efficiency. In more general contexts, covariance matrices can also be diagonalized using the Karhunen-Loève transforms (KLTs), or more generally using empirical orthogonal and biorthogonal expansions, which are unfortunately much more demanding in terms of computational efforts. In cases with increment stationarity, the mathematical modeling can be modified and generalized covariances can be used with some computational advantages. The general nonlinear solution methodology is also briefly overviewed with the practical limitations. These different formulations are discussed with special emphasis on the spectral properties of covariance matrices and illustrated with some numerical examples. General recommendations are included for practical geoscience applications.
ISSN:1024-123X
1563-5147
DOI:10.1155/2013/895061