Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma
Radiotherapy is an effective treatment for some esophageal cancers, but the molecular mechanisms of radiosensitivity remain unknown. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a novel nuclear protein which is overexpressed in various cancers but not yet examined in esophageal squam...
Gespeichert in:
Veröffentlicht in: | Molecular biology reports 2013-09, Vol.40 (9), p.5225-5235 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiotherapy is an effective treatment for some esophageal cancers, but the molecular mechanisms of radiosensitivity remain unknown. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a novel nuclear protein which is overexpressed in various cancers but not yet examined in esophageal squamous cell carcinoma (ESCC). The correlation between UHRF1 and the radioresistance in ESCC is still unclear. In the present study, the expression of UHRF1 was examined by immunohistochemistry in specimens of ESCC patients treated with radiotherapy. The results showed that UHRF1 was significantly overexpressed in ESCC specimens. Overexpression of UHRF1 correlated significantly with advanced T-stage, positive lymph node metastasis and poor differentiation. In addition, UHRF1 was associated with radiotherapy response, in which overexpression of UHRF1 was observed more frequently in the radioresistant group than in the effective group. At the molecular level, inhibition of UHRF1 by lentivirus-mediated shRNA targeting UHRF1 increased the radiosensitivity and apoptosis, while decreased radiation-induced G2/M phase arrest in TE-1 cells. Moreover, inhibition of UHRF1 resulted in higher residual γH2AX expression after irradiation, but not initial γH2AX. Further study showed that inhibition of UHRF1 down-regulated the endogenous expressions of DNA repair protein Ku70 and Ku80 in TE-1 cells, and significantly inhibited the increase of these proteins after irradiation. Above all, our data suggested that UHRF1 might play an important role in radioresistance of ESCC, and inhibition of UHRF1 can increase the radiosensitivity of TE-1 cells by altering cell cycle progression, enhancing apoptosis, and decreasing DNA damage repair capacity. |
---|---|
ISSN: | 0301-4851 1573-4978 |
DOI: | 10.1007/s11033-013-2559-6 |