Structure of the human glucagon class B G-protein-coupled receptor
Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, c...
Gespeichert in:
Veröffentlicht in: | Nature 2013-07, Vol.499 (7459), p.444-449 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a ‘stalk’ region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (∼12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon’s amino terminus into the seven transmembrane domain.
The X-ray crystal structure of the human glucagon receptor, a potential drug target for type 2 diabetes, offers a structural basis for molecular recognition by class B G-protein-coupled receptors.
Two class B human GPCR receptors
G-protein-coupled receptors (GPCRs) are membrane proteins that act as sensors for a broad range of extracellular signals, including photons, ions, small organic molecules and even entire proteins. Approximately a third of known drugs target GPCRs. Until now all the published structures of GPCRs have been from class A GPCRs. In this issue of
Nature
two groups independently report the crystal structures of two receptors of the B family, the second largest of four family divisions based on primary sequence and pharmacology. Hollenstein
et al
. solved the structure of human corticotropin-releasing factor receptor 1. This GPCR binds to corticotropin-releasing hormone, a potent mediator of endocrine, autonomic, behavioral and immune responses to stress. In all known class A GPCRs, the ligand-binding sites are close to the extracellular boundaries of the receptors; in this GPCR, the antagonist (CP-376395) binds in a hydrophobic pocket located in the cytoplasmic half of the V-shaped receptor. Siu
et al
. solved the X-ray crystal structure of the human glucagon receptor. This GPCR binds to the glucagon peptide, which triggers the release of glucose from the liver, making it a potential drug target for type 2 diabetes. The structure reveals a larger l |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature12393 |