Formation of Ultrafine Cellular Microstructure Around Alumina Particles in a Low-Carbon Steel
Ultrafine cellular microstructures around alumina particles in a low-carbon steel were observed, which survived even after cyclic austenitization. This indicates that their formation is closely related to internal stress because of a structural heterogeneity during phase transformation rather than t...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-09, Vol.44 (9), p.4098-4105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrafine cellular microstructures around alumina particles in a low-carbon steel were observed, which survived even after cyclic austenitization. This indicates that their formation is closely related to internal stress because of a structural heterogeneity during phase transformation rather than to externally applied forces or deformation. Thermo-elasto-plastic finite element analysis confirmed the evolution of a large hydrostatic pressure around an alumina particle due to thermal mismatch during cooling. Therefore, the fine cellular microstructure might be generated as a result of the hydrostatic pressure, which retards the phase transformation around the particle during cooling. In addition, we observed microstructural similarity with the same steel processed under an ultra-high pressure, which was the evidence for the role of the delay in the transformation caused by the hydrostatic pressure. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-013-1753-4 |