Modelling for rearrangement of fusiform initials during radial growth of the vascular cambium in Pinus sylvestris L

In contrast to common belief, recent studies have confirmed that intrusive growth of fusiform cambial initials has a significant role in the rearrangement of the initials, but does not contribute to the cambial circumference increment. We observed a rapid rearrangement of cambial initials on a long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trees (Berlin, West) West), 2013-08, Vol.27 (4), p.879-893
Hauptverfasser: Włoch, Wiesław, Wilczek, Anna, Jura-Morawiec, Joanna, Kojs, Paweł, Iqbal, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In contrast to common belief, recent studies have confirmed that intrusive growth of fusiform cambial initials has a significant role in the rearrangement of the initials, but does not contribute to the cambial circumference increment. We observed a rapid rearrangement of cambial initials on a long series of transverse sections of the vascular cambium and the wood of a 50-year-old pine (Pinus sylvestris L.) tree. A comparison of cell arrangement in consecutive sections, as well as a critical analysis of tangential reconstructions, has confirmed that changes in cell locations in a group of cells on the tangential surface caused no change in the total tangential width of the whole group. Models illustrating changes in locations of the initials have been proposed, assuming that intrusive growth, which makes the growing initials intrude between the neighbouring initials and their immediate derivatives, is localized on the longitudinal edges of cells. We infer that intrusive growth of the cambial initials in P. sylvestris is not involved in the cambial circumference increment, but plays a significant role in the rearrangement of the initials, probably allowing for a relaxation of shearing strains generated during radial growth. The relationship of intrusive growth with the elimination of initials has been discussed with reference to the frequency of anticlinal divisions. It has been proposed that the occurrence of anticlinal divisions in excess over the actual requirement for increase in the cambial circumference could be due to internal shearing strains.
ISSN:0931-1890
1432-2285
DOI:10.1007/s00468-013-0842-8