On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs

We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2011-07, Vol.21 (3), p.798-823
Hauptverfasser: Outrata, Jiří V., Ramírez C., Héctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 3
container_start_page 798
container_title SIAM journal on optimization
container_volume 21
creator Outrata, Jiří V.
Ramírez C., Héctor
description We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100807168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1372744053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3009048531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-71bc4cd1f8fa17ca8813505ef23e5a4df29b00545df1e3490a99f36e1a2ab2323</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4e_AcBTx6q-WyT41L8goUW1HNJ04l22W1qkh7239uy4mkG5pmZlwehW0oeKOXFIyVEkYLm6gytKNEyK6jS50svWZYzLi7RVYw7MmM6VytUVwNO34A3U9sPuA5-hJCO2Dtchj711uxx7fshRZw8rufZFFro8DtYP3RZFToIuPQDLKtfwRziNbpwZh_h5q-u0efz00f5mm2rl7dys80sk0WaY7VW2I465QwtrFGKckkkOMZBGtE5pltCpJCdo8CFJkZrx3OghpmWccbX6O50dwz-Z4KYmp2fwjC_bGYPrBCCSD5T9yfKBh9jANeMoT-YcGwoaRZhzb8w_gsi7Fu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372744053</pqid></control><display><type>article</type><title>On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Outrata, Jiří V. ; Ramírez C., Héctor</creator><creatorcontrib>Outrata, Jiří V. ; Ramírez C., Héctor</creatorcontrib><description>We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/100807168</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Applied mathematics</subject><ispartof>SIAM journal on optimization, 2011-07, Vol.21 (3), p.798-823</ispartof><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-71bc4cd1f8fa17ca8813505ef23e5a4df29b00545df1e3490a99f36e1a2ab2323</citedby><cites>FETCH-LOGICAL-c257t-71bc4cd1f8fa17ca8813505ef23e5a4df29b00545df1e3490a99f36e1a2ab2323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Outrata, Jiří V.</creatorcontrib><creatorcontrib>Ramírez C., Héctor</creatorcontrib><title>On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs</title><title>SIAM journal on optimization</title><description>We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Applied mathematics</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LxDAQhoMouK4e_AcBTx6q-WyT41L8goUW1HNJ04l22W1qkh7239uy4mkG5pmZlwehW0oeKOXFIyVEkYLm6gytKNEyK6jS50svWZYzLi7RVYw7MmM6VytUVwNO34A3U9sPuA5-hJCO2Dtchj711uxx7fshRZw8rufZFFro8DtYP3RZFToIuPQDLKtfwRziNbpwZh_h5q-u0efz00f5mm2rl7dys80sk0WaY7VW2I465QwtrFGKckkkOMZBGtE5pltCpJCdo8CFJkZrx3OghpmWccbX6O50dwz-Z4KYmp2fwjC_bGYPrBCCSD5T9yfKBh9jANeMoT-YcGwoaRZhzb8w_gsi7Fu0</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Outrata, Jiří V.</creator><creator>Ramírez C., Héctor</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20110701</creationdate><title>On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs</title><author>Outrata, Jiří V. ; Ramírez C., Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-71bc4cd1f8fa17ca8813505ef23e5a4df29b00545df1e3490a99f36e1a2ab2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Applied mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Outrata, Jiří V.</creatorcontrib><creatorcontrib>Ramírez C., Héctor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Outrata, Jiří V.</au><au>Ramírez C., Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs</atitle><jtitle>SIAM journal on optimization</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>798</spage><epage>823</epage><pages>798-823</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100807168</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 2011-07, Vol.21 (3), p.798-823
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_1372744053
source SIAM Journals Online; Business Source Complete
subjects Algebra
Applied mathematics
title On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Aubin%20Property%20of%20Critical%20Points%20to%20Perturbed%20Second-Order%20Cone%20Programs&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Outrata,%20Ji%C5%99%C3%AD%20V.&rft.date=2011-07-01&rft.volume=21&rft.issue=3&rft.spage=798&rft.epage=823&rft.pages=798-823&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/100807168&rft_dat=%3Cproquest_cross%3E3009048531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372744053&rft_id=info:pmid/&rfr_iscdi=true