On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs

We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2011-07, Vol.21 (3), p.798-823
Hauptverfasser: Outrata, Jiří V., Ramírez C., Héctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT]
ISSN:1052-6234
1095-7189
DOI:10.1137/100807168