On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs
We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2011-07, Vol.21 (3), p.798-823 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/100807168 |