THE BEST RANK-ONE APPROXIMATION RATIO OF A TENSOR SPACE
In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-one approximation of any tensor in that tensor space and the norm of that tensor. This uppe...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2011-04, Vol.32 (2), p.430-442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-one approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-one update algorithm. For finite dimensional general tensor spaces, third order finite dimensional symmetric tensor spaces, and finite biquadratic tensor spaces, we give positive lower bounds for the best rank-one approximation ratio. For finite symmetric tensor spaces and finite dimensional biquadratic tensor spaces, we give upper bounds for this ratio. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/100795802 |