THE BEST RANK-ONE APPROXIMATION RATIO OF A TENSOR SPACE

In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-one approximation of any tensor in that tensor space and the norm of that tensor. This uppe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2011-04, Vol.32 (2), p.430-442
1. Verfasser: Qi, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-one approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-one update algorithm. For finite dimensional general tensor spaces, third order finite dimensional symmetric tensor spaces, and finite biquadratic tensor spaces, we give positive lower bounds for the best rank-one approximation ratio. For finite symmetric tensor spaces and finite dimensional biquadratic tensor spaces, we give upper bounds for this ratio. [PUBLICATION ABSTRACT]
ISSN:0895-4798
1095-7162
DOI:10.1137/100795802