Accurate Semi-Lagrangian Time Stepping for Stochastic Optimal Control Problems with Application to the Valuation of Natural Gas Storage
We describe a semi-Lagrangian time-stepping algorithm for a particular class of stochastic optimal control problems, applicable to storage valuation problems. The discretization in time uses a semi-Lagrangian approach based on Strang splitting, and convergence to the unique viscosity solution is est...
Gespeichert in:
Veröffentlicht in: | SIAM journal on financial mathematics 2013-01, Vol.4 (1), p.427-451 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a semi-Lagrangian time-stepping algorithm for a particular class of stochastic optimal control problems, applicable to storage valuation problems. The discretization in time uses a semi-Lagrangian approach based on Strang splitting, and convergence to the unique viscosity solution is established by appealing to the framework of Barles and Souganidis [Asymptotic Anal., 4 (1991), pp. 271--283]. The approach is illustrated in the context of a natural gas storage setting. A fully discrete approximation for the storage valuation problem using a Fourier-cosine method is described, and second-order convergence demonstrated, for pure-diffusion and jump-diffusion models. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1945-497X 1945-497X |
DOI: | 10.1137/110853546 |