Accurate Semi-Lagrangian Time Stepping for Stochastic Optimal Control Problems with Application to the Valuation of Natural Gas Storage

We describe a semi-Lagrangian time-stepping algorithm for a particular class of stochastic optimal control problems, applicable to storage valuation problems. The discretization in time uses a semi-Lagrangian approach based on Strang splitting, and convergence to the unique viscosity solution is est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on financial mathematics 2013-01, Vol.4 (1), p.427-451
1. Verfasser: Ware, Antony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a semi-Lagrangian time-stepping algorithm for a particular class of stochastic optimal control problems, applicable to storage valuation problems. The discretization in time uses a semi-Lagrangian approach based on Strang splitting, and convergence to the unique viscosity solution is established by appealing to the framework of Barles and Souganidis [Asymptotic Anal., 4 (1991), pp. 271--283]. The approach is illustrated in the context of a natural gas storage setting. A fully discrete approximation for the storage valuation problem using a Fourier-cosine method is described, and second-order convergence demonstrated, for pure-diffusion and jump-diffusion models. [PUBLICATION ABSTRACT]
ISSN:1945-497X
1945-497X
DOI:10.1137/110853546