Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration
Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2013-07, Vol.42 (7), p.1411-1416 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1416 |
---|---|
container_issue | 7 |
container_start_page | 1411 |
container_title | Journal of electronic materials |
container_volume | 42 |
creator | Hwang, Sungwoo Kim, Sang-Il Ahn, Kyunghan Roh, Jong Wook Yang, Dae-Jin Lee, Sang-Mock Lee, Kyu-Hyoung |
description | Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit
ZT
. We have developed a wet chemical process to fabricate Bi
0.5
Sb
1.5
Te
3
-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi
0.5
Sb
1.5
Te
3
powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi
0.5
Sb
1.5
Te
3
nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit
ZT
was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys. |
doi_str_mv | 10.1007/s11664-012-2280-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1370822959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003595941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</originalsourceid><addsrcrecordid>eNp1kM1O6zAQhS10kegFHoCdJcTS4LFj115SbvmR-JMoEjvLMRMaSONgp0iseHVSitDdsJrFfOfM6CNkD_ghcD4-ygBaF4yDYEIYzvQGGYEqJAOjH_6QEZcamBJSbZG_OT9zDgoMjMjHtJ37NtTtE-3nSGdzTIuIDYY-1YHepthh6mvMNFa0Y7P3Dulk2bzQSc3uSjZDeu3bGOKii7nuB-yt9vQuNsu-ji2b-IyP9Ap733xxnR-6QoP0H4aY_IrZIZuVbzLufs9tcn86nZ2cs8ubs4uT40sWZKF7VkJVhHEQBRTeKxGEglAWRgsuSxs4WlsqGbg1wQooLZfSKuFLrbh-FNYYuU32171diq9LzL17jsvUDicdyDE3QlhlBwrWVEgx54SV61K98OndAXcrz27t2Q2e3cqz00Pm4LvZ5-CbKq105p-gGGurjZIDJ9ZcHlbtE6b_Pvi1_BM7HY0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370822959</pqid></control><display><type>article</type><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</creator><creatorcontrib>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</creatorcontrib><description>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit
ZT
. We have developed a wet chemical process to fabricate Bi
0.5
Sb
1.5
Te
3
-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi
0.5
Sb
1.5
Te
3
powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi
0.5
Sb
1.5
Te
3
nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit
ZT
was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2280-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity phenomena in semiconductors and insulators ; Cross-disciplinary physics: materials science; rheology ; Dielectric properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in condensed matter ; Electronic transport phenomena in thin films and low-dimensional structures ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Materials Science ; Nanocomposites ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Plasma sintering ; Solid State Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal stability; thermal effects ; Thermoelectric and thermomagnetic effects ; Thermoelectric effects</subject><ispartof>Journal of electronic materials, 2013-07, Vol.42 (7), p.1411-1416</ispartof><rights>TMS 2012</rights><rights>2014 INIST-CNRS</rights><rights>TMS 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</citedby><cites>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-012-2280-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-012-2280-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27696853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Sungwoo</creatorcontrib><creatorcontrib>Kim, Sang-Il</creatorcontrib><creatorcontrib>Ahn, Kyunghan</creatorcontrib><creatorcontrib>Roh, Jong Wook</creatorcontrib><creatorcontrib>Yang, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang-Mock</creatorcontrib><creatorcontrib>Lee, Kyu-Hyoung</creatorcontrib><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit
ZT
. We have developed a wet chemical process to fabricate Bi
0.5
Sb
1.5
Te
3
-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi
0.5
Sb
1.5
Te
3
powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi
0.5
Sb
1.5
Te
3
nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit
ZT
was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectric properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in condensed matter</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Solid State Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal stability; thermal effects</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectric effects</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1O6zAQhS10kegFHoCdJcTS4LFj115SbvmR-JMoEjvLMRMaSONgp0iseHVSitDdsJrFfOfM6CNkD_ghcD4-ygBaF4yDYEIYzvQGGYEqJAOjH_6QEZcamBJSbZG_OT9zDgoMjMjHtJ37NtTtE-3nSGdzTIuIDYY-1YHepthh6mvMNFa0Y7P3Dulk2bzQSc3uSjZDeu3bGOKii7nuB-yt9vQuNsu-ji2b-IyP9Ap733xxnR-6QoP0H4aY_IrZIZuVbzLufs9tcn86nZ2cs8ubs4uT40sWZKF7VkJVhHEQBRTeKxGEglAWRgsuSxs4WlsqGbg1wQooLZfSKuFLrbh-FNYYuU32171diq9LzL17jsvUDicdyDE3QlhlBwrWVEgx54SV61K98OndAXcrz27t2Q2e3cqz00Pm4LvZ5-CbKq105p-gGGurjZIDJ9ZcHlbtE6b_Pvi1_BM7HY0g</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hwang, Sungwoo</creator><creator>Kim, Sang-Il</creator><creator>Ahn, Kyunghan</creator><creator>Roh, Jong Wook</creator><creator>Yang, Dae-Jin</creator><creator>Lee, Sang-Mock</creator><creator>Lee, Kyu-Hyoung</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130701</creationdate><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><author>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectric properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in condensed matter</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Solid State Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal stability; thermal effects</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectric effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Sungwoo</creatorcontrib><creatorcontrib>Kim, Sang-Il</creatorcontrib><creatorcontrib>Ahn, Kyunghan</creatorcontrib><creatorcontrib>Roh, Jong Wook</creatorcontrib><creatorcontrib>Yang, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang-Mock</creatorcontrib><creatorcontrib>Lee, Kyu-Hyoung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Sungwoo</au><au>Kim, Sang-Il</au><au>Ahn, Kyunghan</au><au>Roh, Jong Wook</au><au>Yang, Dae-Jin</au><au>Lee, Sang-Mock</au><au>Lee, Kyu-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>1411</spage><epage>1416</epage><pages>1411-1416</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit
ZT
. We have developed a wet chemical process to fabricate Bi
0.5
Sb
1.5
Te
3
-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi
0.5
Sb
1.5
Te
3
powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi
0.5
Sb
1.5
Te
3
nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit
ZT
was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2280-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2013-07, Vol.42 (7), p.1411-1416 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1370822959 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conductivity phenomena in semiconductors and insulators Cross-disciplinary physics: materials science rheology Dielectric properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in condensed matter Electronic transport phenomena in thin films and low-dimensional structures Electronics and Microelectronics Exact sciences and technology Instrumentation Materials Science Nanocomposites Nanoparticles Nanoscale materials and structures: fabrication and characterization Optical and Electronic Materials Other topics in nanoscale materials and structures Physical properties of thin films, nonelectronic Physics Plasma sintering Solid State Physics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermal stability thermal effects Thermoelectric and thermomagnetic effects Thermoelectric effects |
title | Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermoelectric%20Properties%20of%20p-Type%20Bulk%20Bi-Sb-Te%20Nanocomposites%20via%20Solution-Based%20Metal%20Nanoparticle%20Decoration&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Hwang,%20Sungwoo&rft.date=2013-07-01&rft.volume=42&rft.issue=7&rft.spage=1411&rft.epage=1416&rft.pages=1411-1416&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2280-6&rft_dat=%3Cproquest_cross%3E3003595941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370822959&rft_id=info:pmid/&rfr_iscdi=true |