Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration

Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2013-07, Vol.42 (7), p.1411-1416
Hauptverfasser: Hwang, Sungwoo, Kim, Sang-Il, Ahn, Kyunghan, Roh, Jong Wook, Yang, Dae-Jin, Lee, Sang-Mock, Lee, Kyu-Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 7
container_start_page 1411
container_title Journal of electronic materials
container_volume 42
creator Hwang, Sungwoo
Kim, Sang-Il
Ahn, Kyunghan
Roh, Jong Wook
Yang, Dae-Jin
Lee, Sang-Mock
Lee, Kyu-Hyoung
description Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te 3 -based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi 0.5 Sb 1.5 Te 3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi 0.5 Sb 1.5 Te 3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.
doi_str_mv 10.1007/s11664-012-2280-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1370822959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003595941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</originalsourceid><addsrcrecordid>eNp1kM1O6zAQhS10kegFHoCdJcTS4LFj115SbvmR-JMoEjvLMRMaSONgp0iseHVSitDdsJrFfOfM6CNkD_ghcD4-ygBaF4yDYEIYzvQGGYEqJAOjH_6QEZcamBJSbZG_OT9zDgoMjMjHtJ37NtTtE-3nSGdzTIuIDYY-1YHepthh6mvMNFa0Y7P3Dulk2bzQSc3uSjZDeu3bGOKii7nuB-yt9vQuNsu-ji2b-IyP9Ap733xxnR-6QoP0H4aY_IrZIZuVbzLufs9tcn86nZ2cs8ubs4uT40sWZKF7VkJVhHEQBRTeKxGEglAWRgsuSxs4WlsqGbg1wQooLZfSKuFLrbh-FNYYuU32171diq9LzL17jsvUDicdyDE3QlhlBwrWVEgx54SV61K98OndAXcrz27t2Q2e3cqz00Pm4LvZ5-CbKq105p-gGGurjZIDJ9ZcHlbtE6b_Pvi1_BM7HY0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370822959</pqid></control><display><type>article</type><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</creator><creatorcontrib>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</creatorcontrib><description>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te 3 -based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi 0.5 Sb 1.5 Te 3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi 0.5 Sb 1.5 Te 3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2280-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity phenomena in semiconductors and insulators ; Cross-disciplinary physics: materials science; rheology ; Dielectric properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in condensed matter ; Electronic transport phenomena in thin films and low-dimensional structures ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Materials Science ; Nanocomposites ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Plasma sintering ; Solid State Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal stability; thermal effects ; Thermoelectric and thermomagnetic effects ; Thermoelectric effects</subject><ispartof>Journal of electronic materials, 2013-07, Vol.42 (7), p.1411-1416</ispartof><rights>TMS 2012</rights><rights>2014 INIST-CNRS</rights><rights>TMS 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</citedby><cites>FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-012-2280-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-012-2280-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27696853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Sungwoo</creatorcontrib><creatorcontrib>Kim, Sang-Il</creatorcontrib><creatorcontrib>Ahn, Kyunghan</creatorcontrib><creatorcontrib>Roh, Jong Wook</creatorcontrib><creatorcontrib>Yang, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang-Mock</creatorcontrib><creatorcontrib>Lee, Kyu-Hyoung</creatorcontrib><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te 3 -based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi 0.5 Sb 1.5 Te 3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi 0.5 Sb 1.5 Te 3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectric properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in condensed matter</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Solid State Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal stability; thermal effects</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectric effects</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1O6zAQhS10kegFHoCdJcTS4LFj115SbvmR-JMoEjvLMRMaSONgp0iseHVSitDdsJrFfOfM6CNkD_ghcD4-ygBaF4yDYEIYzvQGGYEqJAOjH_6QEZcamBJSbZG_OT9zDgoMjMjHtJ37NtTtE-3nSGdzTIuIDYY-1YHepthh6mvMNFa0Y7P3Dulk2bzQSc3uSjZDeu3bGOKii7nuB-yt9vQuNsu-ji2b-IyP9Ap733xxnR-6QoP0H4aY_IrZIZuVbzLufs9tcn86nZ2cs8ubs4uT40sWZKF7VkJVhHEQBRTeKxGEglAWRgsuSxs4WlsqGbg1wQooLZfSKuFLrbh-FNYYuU32171diq9LzL17jsvUDicdyDE3QlhlBwrWVEgx54SV61K98OndAXcrz27t2Q2e3cqz00Pm4LvZ5-CbKq105p-gGGurjZIDJ9ZcHlbtE6b_Pvi1_BM7HY0g</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hwang, Sungwoo</creator><creator>Kim, Sang-Il</creator><creator>Ahn, Kyunghan</creator><creator>Roh, Jong Wook</creator><creator>Yang, Dae-Jin</creator><creator>Lee, Sang-Mock</creator><creator>Lee, Kyu-Hyoung</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130701</creationdate><title>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</title><author>Hwang, Sungwoo ; Kim, Sang-Il ; Ahn, Kyunghan ; Roh, Jong Wook ; Yang, Dae-Jin ; Lee, Sang-Mock ; Lee, Kyu-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b1f4c7c2414aa52c251cb486203b9c0e99b53c098c921b9033952ab6506d29883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectric properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in condensed matter</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Solid State Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal stability; thermal effects</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectric effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Sungwoo</creatorcontrib><creatorcontrib>Kim, Sang-Il</creatorcontrib><creatorcontrib>Ahn, Kyunghan</creatorcontrib><creatorcontrib>Roh, Jong Wook</creatorcontrib><creatorcontrib>Yang, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang-Mock</creatorcontrib><creatorcontrib>Lee, Kyu-Hyoung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Sungwoo</au><au>Kim, Sang-Il</au><au>Ahn, Kyunghan</au><au>Roh, Jong Wook</au><au>Yang, Dae-Jin</au><au>Lee, Sang-Mock</au><au>Lee, Kyu-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>1411</spage><epage>1416</epage><pages>1411-1416</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT . We have developed a wet chemical process to fabricate Bi 0.5 Sb 1.5 Te 3 -based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi 0.5 Sb 1.5 Te 3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi 0.5 Sb 1.5 Te 3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2280-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2013-07, Vol.42 (7), p.1411-1416
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1370822959
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conductivity phenomena in semiconductors and insulators
Cross-disciplinary physics: materials science
rheology
Dielectric properties
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in condensed matter
Electronic transport phenomena in thin films and low-dimensional structures
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Materials Science
Nanocomposites
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Optical and Electronic Materials
Other topics in nanoscale materials and structures
Physical properties of thin films, nonelectronic
Physics
Plasma sintering
Solid State Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermal stability
thermal effects
Thermoelectric and thermomagnetic effects
Thermoelectric effects
title Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermoelectric%20Properties%20of%20p-Type%20Bulk%20Bi-Sb-Te%20Nanocomposites%20via%20Solution-Based%20Metal%20Nanoparticle%20Decoration&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Hwang,%20Sungwoo&rft.date=2013-07-01&rft.volume=42&rft.issue=7&rft.spage=1411&rft.epage=1416&rft.pages=1411-1416&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2280-6&rft_dat=%3Cproquest_cross%3E3003595941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370822959&rft_id=info:pmid/&rfr_iscdi=true