Global Identification of Wind Turbines Using a Hammerstein Identification Method

In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2013-07, Vol.21 (4), p.1471-1478
Hauptverfasser: van der Veen, Gijs, van Wingerden, J-W, Verhaegen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of the torque and thrust coefficients. Hammerstein systems consist of a static nonlinearity followed by a linear, time-invariant dynamic subsystem. The dynamic subsystem is identified using a new closed-loop subspace method. The nonlinearity is described using a recently developed regression framework for multivariate splines. We further propose a separable least-squares framework for recovery of the low-rank structure between the nonlinearity and the linear time-invariant system. The method is applied to a detailed simulation of the three-bladed NREL controls advanced research turbine.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2012.2205929