Global Identification of Wind Turbines Using a Hammerstein Identification Method
In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2013-07, Vol.21 (4), p.1471-1478 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of the torque and thrust coefficients. Hammerstein systems consist of a static nonlinearity followed by a linear, time-invariant dynamic subsystem. The dynamic subsystem is identified using a new closed-loop subspace method. The nonlinearity is described using a recently developed regression framework for multivariate splines. We further propose a separable least-squares framework for recovery of the low-rank structure between the nonlinearity and the linear time-invariant system. The method is applied to a detailed simulation of the three-bladed NREL controls advanced research turbine. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2012.2205929 |