Thermo-physical modeling of die-sinking EDM process

This paper reports the development of a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM). Numerical analysis of the single spark operation of EDM process has been carried out considering the two-dimensional axi-symmetric process conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of manufacturing processes 2010, Vol.12 (1), p.45-56
Hauptverfasser: Joshi, S.N., Pande, S.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the development of a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM). Numerical analysis of the single spark operation of EDM process has been carried out considering the two-dimensional axi-symmetric process continuum. The analysis is based on more realistic assumptions such as Gaussian distribution of heat flux, spark radius equation based on discharge current and discharge duration, latent heat of melting, etc., to predict the shape of crater cavity and the material removal rate (MRR). Using the developed model, parametric studies were carried out to study the effect of EDM process parameters such as discharge current, discharge duration, discharge voltage and duty cycle on the process performance. Experimental studies were carried out to study the MRR and crater shapes produced during actual machining. When compared with the reported analytical models, our model was found to predict results closer to the experimental results. The thermo-physical model developed can further be used to carry out exhaustive studies on the EDM process to obtain optimal process conditions.
ISSN:1526-6125
2212-4616
DOI:10.1016/j.jmapro.2010.02.001