Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough

There is little consensus about how natural (e.g. productivity, disturbance) and anthropogenic (e.g. invasive species, habitat destruction) ecological drivers influence biodiversity. Here, we show that when sampling is standardised by area (species density) or individuals (rarefied species richness)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2013-05, Vol.16 (s1), p.17-26
Hauptverfasser: Chase, Jonathan M., Knight, Tiffany M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is little consensus about how natural (e.g. productivity, disturbance) and anthropogenic (e.g. invasive species, habitat destruction) ecological drivers influence biodiversity. Here, we show that when sampling is standardised by area (species density) or individuals (rarefied species richness), the measured effect sizes depend critically on the spatial grain and extent of sampling, as well as the size of the species pool. This compromises comparisons of effects sizes within studies using standard statistics, as well as among studies using meta‐analysis. To derive an unambiguous effect size, we advocate that comparisons need to be made on a scale‐independent metric, such as Hurlbert's Probability of Interspecific Encounter. Analyses of this metric can be used to disentangle the relative influence of changes in the absolute and relative abundances of individuals, as well as their intraspecific aggregations, in driving differences in biodiversity among communities. This and related approaches are necessary to achieve generality in understanding how biodiversity responds to ecological drivers and will necessitate a change in the way many ecologists collect and analyse their data.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.12112