Energy-Efficient Uplink Multi-User MIMO
This paper addresses optimal energy-efficient design for uplink (UL) MU-MIMO in a single cell environment. The energy efficiency is measured by throughput per Joule, while both RF transmission power and device electronic circuit power are considered. We define the energy efficiency (EE) capacity for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2013-05, Vol.12 (5), p.2302-2313 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses optimal energy-efficient design for uplink (UL) MU-MIMO in a single cell environment. The energy efficiency is measured by throughput per Joule, while both RF transmission power and device electronic circuit power are considered. We define the energy efficiency (EE) capacity for UL MU-MIMO and study the power allocation that achieves this capacity. First we assume all users consume a fixed amount of circuit power and show that user antennas should be used only when the corresponding spatial channels are sufficiently good and using them improves the overall network EE. Mobile devices may have improved circuit management capability and turn off circuit operations when some antennas are not used to reduce circuit power consumption. Therefore we further study energy-efficient UL MU-MIMO with improved circuit management and show that some antennas should not be used even when their channel states are good because turning them on consumes too much circuit power. Based on theoretical analysis, we further develop low-complexity yet globally optimal energy-efficient power allocation algorithms that converge to the optimum exponentially. Simulation results are provided to demonstrate the significant gain in network energy efficiency. |
---|---|
ISSN: | 1536-1276 1558-2248 1558-2248 |
DOI: | 10.1109/TWC.2013.040213.120942 |