Suzaku observations of 'bare' active galactic nuclei

We present an X-ray spectral analysis of a large sample of 25 'bare' active galactic nuclei (AGN), sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection and examining the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-02, Vol.428 (4), p.2901-2920
Hauptverfasser: Walton, D. J., Nardini, E., Fabian, A. C., Gallo, L. C., Reis, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an X-ray spectral analysis of a large sample of 25 'bare' active galactic nuclei (AGN), sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection and examining the implications of this interpretation for the intrinsic spectral complexities frequently displayed by AGN in the X-ray bandpass. During the analysis, we take the unique approach of attempting to simultaneously undertake a systematic analysis of the whole sample, as well as a detailed treatment of each individual source, and find that disc reflection has the required flexibility to successfully reproduce the broad-band spectrum observed for all of the sources considered. Where possible, we use the reflected emission to place constraints on the black hole spin for this sample of sources. Our analysis suggests a general preference for rapidly rotating black holes, which if taken at face value is most consistent with the scenario in which supermassive black hole growth is dominated by prolonged, ordered accretion. However, there may be observational biases towards AGN with high spin in the compiled sample, limiting our ability to draw strong conclusions for the general population at this stage. Finally, contrary to popular belief, our analysis also implies that the dichotomy between radio-loud/radio-quiet AGN is not solely related to black hole spin.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/sts227