Asymptotic analysis of positive solutions of a class of third order nonlinear differential equations in the framework of regular variation

This paper is devoted to the asymptotic analysis of the third order sublinear differential equation \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ x^{\prime \prime \prime } + q(t)|x|^{\gamma }\textrm {sgn}\;x = 0, \quad q(t) > 0, \quad 0 < \gamma < 1, \qquad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2013-02, Vol.286 (2-3), p.205-223
Hauptverfasser: Jaroš, Jaroslav, Takaŝi, Kusano, Tanigawa, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the asymptotic analysis of the third order sublinear differential equation \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ x^{\prime \prime \prime } + q(t)|x|^{\gamma }\textrm {sgn}\;x = 0, \quad q(t) > 0, \quad 0 < \gamma < 1, \qquad \mathrm{(\textrm {A})} $$ \end{document} in the framework of regular variation. It is shown that in case q(t) is nearly regularly varying accurate information can be acquired about the existence of possible positive solutions of (A) and their asymptotic behavior as t → ∞.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201100296