Least squares estimators for discretely observed stochastic processes driven by small Lévy noises

We study the problem of parameter estimation for discretely observed stochastic processes driven by additive small Lévy noises. We do not impose any moment condition on the driving Lévy process. Under certain regularity conditions on the drift function, we obtain consistency and rate of convergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2013-04, Vol.116, p.422-439
Hauptverfasser: Long, Hongwei, Shimizu, Yasutaka, Sun, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of parameter estimation for discretely observed stochastic processes driven by additive small Lévy noises. We do not impose any moment condition on the driving Lévy process. Under certain regularity conditions on the drift function, we obtain consistency and rate of convergence of the least squares estimator (LSE) of the drift parameter when a small dispersion coefficient ε→0 and n→∞ simultaneously. The asymptotic distribution of the LSE in our general setting is shown to be the convolution of a normal distribution and a distribution related to the jump part of the Lévy process. Moreover, we briefly remark that our methodology can be easily extended to the more general case of semi-martingale noises.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2013.01.012