Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones
Extracellular redox-active compounds, flavins and other quinones, have been hypothesized to play a major role in the delivery of electrons from cellular metabolic systems to extracellular insoluble substrates by a diffusion-based shuttling two-electron-transfer mechanism. Here we show that flavin mo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (19), p.7856-7861 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular redox-active compounds, flavins and other quinones, have been hypothesized to play a major role in the delivery of electrons from cellular metabolic systems to extracellular insoluble substrates by a diffusion-based shuttling two-electron-transfer mechanism. Here we show that flavin molecules secreted by Shewanella oneidensis MR-1 enhance the ability of its outer-membrane c -type cytochromes (OM c- Cyts) to transport electrons as redox cofactors, but not free-form flavins. Whole-cell differential pulse voltammetry revealed that the redox potential of flavin was reversibly shifted more than 100 mV in a positive direction, in good agreement with increasing microbial current generation. Importantly, this flavin/OM c- Cyts interaction was found to facilitate a one-electron redox reaction via a semiquinone, resulting in a 10 ³- to 10 ⁵-fold faster reaction rate than that of free flavin. These results are not consistent with previously proposed redox-shuttling mechanisms but suggest that the flavin/OM c- Cyts interaction regulates the extent of extracellular electron transport coupled with intracellular metabolic activity. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1220823110 |