SK4 Ca^sup 2+^ activated K^sup +^ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells
Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling;...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (18), p.E1685 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling; and (ii) the "Ca2+ clock," where cyclical release of Ca2+ from Ca2+ stores depolarizes the membrane during diastole via activation of the Na+-Ca2+ exchanger. Nonetheless, these mechanisms remain controversial. Here, we used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to study their autonomous beating mechanisms. Combined current- and voltage-clamp recordings from the same cell showed the so-called "voltage and Ca2+ clock" pacemaker mechanisms to operate in a mutually exclusive fashion in different cell populations, but also to coexist in other cells. Blocking the "voltage or Ca2+ clock" produced a similar depolarization of the maximal diastolic potential (MDP) that culminated by cessation of action potentials, suggesting that they converge to a common pacemaker component. Using patch-clamp recording, real-time PCR, Western blotting, and immunocytochemistry, we identified a previously unrecognized Ca2+-activated intermediate K+ conductance (IKCa, KCa3.1, or SK4) in young and old stage-derived hESC-CMs. IKCa inhibition produced MDP depolarization and pacemaker suppression. By shaping the MDP driving force and exquisitely balancing inward currents during diastolic depolarization, IKCa appears to play a crucial role in human embryonic cardiac automaticity. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0027-8424 1091-6490 |