High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases

The high-temperature mechanical behavior of extruded Mg 97−3 x Y 2 x Zn x (at. pct) alloys is evaluated from 473 K to 673 K (200 °C to 400 °C). The microstructure of the extruded alloys is characterized by Long Period Stacking Ordered structure (LPSO) elongated particles within the magnesium matrix....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-06, Vol.44 (6), p.2869-2883
Hauptverfasser: Oñorbe, Elvira, Garcés, Gerardo, Dobes, Ferdinand, Pérez, Pablo, Adeva, Paloma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2883
container_issue 6
container_start_page 2869
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 44
creator Oñorbe, Elvira
Garcés, Gerardo
Dobes, Ferdinand
Pérez, Pablo
Adeva, Paloma
description The high-temperature mechanical behavior of extruded Mg 97−3 x Y 2 x Zn x (at. pct) alloys is evaluated from 473 K to 673 K (200 °C to 400 °C). The microstructure of the extruded alloys is characterized by Long Period Stacking Ordered structure (LPSO) elongated particles within the magnesium matrix. At low temperature and high strain rates, their creep behavior shows a high stress exponent ( n  = 11) and high activation energy. Alloys behave as a metal matrix composite where the magnesium matrix transfers part of its load to the LPSO phase. At high-temperature and/or low stresses, creep is controlled by nonbasal dislocation slip. At intermediate and high strain rates at 673 K (400 °C) and at intermediate strain rates between 623 K and 673 K (350 °C and 400 °C), the extruded alloys show superplastic deformation with elongations to failure higher than 200 pct. Cracking of coarse LPSO second-phase particles and their subsequent distribution in the magnesium matrix take place during superplastic deformation, preventing magnesium grain growth.
doi_str_mv 10.1007/s11661-013-1628-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1330872410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2949711161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c660353a7a190b0efb0fa04d93afa2d6b0a8f9ee33ad255c330979c914a3e93a3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhosoOKc_wFtAPEa_JG3aHOeYTtjYwO2gl_CtTbuOrZ1JK-7fm9EhXjwlIc_7fh9PENwyeGAA8aNjTEpGgQnKJE9ochb0WBT6lwrh3N8hFjSSXFwGV85tAIApIXvBclwWa7owu72x2LTWkKlJ11iVKW7Jk1njV1lbUudk9N3YNjMZmRb0nX5UZLDd1gcyrKsGy6qsCjKZv83IfI3OuOvgIsetMzensx8sn0eL4ZhOZi-vw8GEpiHjDU2lBBEJjJEpWIHJV5AjhJkSmCPP5AowyZUxQmDGoygVAlSsUsVCFMZDoh_cdb17W3-2xjV6U7e28iM183AS85CBp1hHpbZ2zppc7225Q3vQDPTRnu7saW9PH-3pxGfuT83ovIrcYpWW7jfIY6G4VNxzvOOc_6oKY_9s8G_5D_bPfbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330872410</pqid></control><display><type>article</type><title>High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases</title><source>SpringerLink Journals</source><creator>Oñorbe, Elvira ; Garcés, Gerardo ; Dobes, Ferdinand ; Pérez, Pablo ; Adeva, Paloma</creator><creatorcontrib>Oñorbe, Elvira ; Garcés, Gerardo ; Dobes, Ferdinand ; Pérez, Pablo ; Adeva, Paloma</creatorcontrib><description>The high-temperature mechanical behavior of extruded Mg 97−3 x Y 2 x Zn x (at. pct) alloys is evaluated from 473 K to 673 K (200 °C to 400 °C). The microstructure of the extruded alloys is characterized by Long Period Stacking Ordered structure (LPSO) elongated particles within the magnesium matrix. At low temperature and high strain rates, their creep behavior shows a high stress exponent ( n  = 11) and high activation energy. Alloys behave as a metal matrix composite where the magnesium matrix transfers part of its load to the LPSO phase. At high-temperature and/or low stresses, creep is controlled by nonbasal dislocation slip. At intermediate and high strain rates at 673 K (400 °C) and at intermediate strain rates between 623 K and 673 K (350 °C and 400 °C), the extruded alloys show superplastic deformation with elongations to failure higher than 200 pct. Cracking of coarse LPSO second-phase particles and their subsequent distribution in the magnesium matrix take place during superplastic deformation, preventing magnesium grain growth.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1628-8</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Extrusion ; High temperature ; Materials Science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Microstructure ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-06, Vol.44 (6), p.2869-2883</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c660353a7a190b0efb0fa04d93afa2d6b0a8f9ee33ad255c330979c914a3e93a3</citedby><cites>FETCH-LOGICAL-c412t-c660353a7a190b0efb0fa04d93afa2d6b0a8f9ee33ad255c330979c914a3e93a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-1628-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-1628-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27392692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oñorbe, Elvira</creatorcontrib><creatorcontrib>Garcés, Gerardo</creatorcontrib><creatorcontrib>Dobes, Ferdinand</creatorcontrib><creatorcontrib>Pérez, Pablo</creatorcontrib><creatorcontrib>Adeva, Paloma</creatorcontrib><title>High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The high-temperature mechanical behavior of extruded Mg 97−3 x Y 2 x Zn x (at. pct) alloys is evaluated from 473 K to 673 K (200 °C to 400 °C). The microstructure of the extruded alloys is characterized by Long Period Stacking Ordered structure (LPSO) elongated particles within the magnesium matrix. At low temperature and high strain rates, their creep behavior shows a high stress exponent ( n  = 11) and high activation energy. Alloys behave as a metal matrix composite where the magnesium matrix transfers part of its load to the LPSO phase. At high-temperature and/or low stresses, creep is controlled by nonbasal dislocation slip. At intermediate and high strain rates at 673 K (400 °C) and at intermediate strain rates between 623 K and 673 K (350 °C and 400 °C), the extruded alloys show superplastic deformation with elongations to failure higher than 200 pct. Cracking of coarse LPSO second-phase particles and their subsequent distribution in the magnesium matrix take place during superplastic deformation, preventing magnesium grain growth.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Extrusion</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLwzAYhosoOKc_wFtAPEa_JG3aHOeYTtjYwO2gl_CtTbuOrZ1JK-7fm9EhXjwlIc_7fh9PENwyeGAA8aNjTEpGgQnKJE9ochb0WBT6lwrh3N8hFjSSXFwGV85tAIApIXvBclwWa7owu72x2LTWkKlJ11iVKW7Jk1njV1lbUudk9N3YNjMZmRb0nX5UZLDd1gcyrKsGy6qsCjKZv83IfI3OuOvgIsetMzensx8sn0eL4ZhOZi-vw8GEpiHjDU2lBBEJjJEpWIHJV5AjhJkSmCPP5AowyZUxQmDGoygVAlSsUsVCFMZDoh_cdb17W3-2xjV6U7e28iM183AS85CBp1hHpbZ2zppc7225Q3vQDPTRnu7saW9PH-3pxGfuT83ovIrcYpWW7jfIY6G4VNxzvOOc_6oKY_9s8G_5D_bPfbA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Oñorbe, Elvira</creator><creator>Garcés, Gerardo</creator><creator>Dobes, Ferdinand</creator><creator>Pérez, Pablo</creator><creator>Adeva, Paloma</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130601</creationdate><title>High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases</title><author>Oñorbe, Elvira ; Garcés, Gerardo ; Dobes, Ferdinand ; Pérez, Pablo ; Adeva, Paloma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c660353a7a190b0efb0fa04d93afa2d6b0a8f9ee33ad255c330979c914a3e93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Extrusion</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oñorbe, Elvira</creatorcontrib><creatorcontrib>Garcés, Gerardo</creatorcontrib><creatorcontrib>Dobes, Ferdinand</creatorcontrib><creatorcontrib>Pérez, Pablo</creatorcontrib><creatorcontrib>Adeva, Paloma</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oñorbe, Elvira</au><au>Garcés, Gerardo</au><au>Dobes, Ferdinand</au><au>Pérez, Pablo</au><au>Adeva, Paloma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>44</volume><issue>6</issue><spage>2869</spage><epage>2883</epage><pages>2869-2883</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The high-temperature mechanical behavior of extruded Mg 97−3 x Y 2 x Zn x (at. pct) alloys is evaluated from 473 K to 673 K (200 °C to 400 °C). The microstructure of the extruded alloys is characterized by Long Period Stacking Ordered structure (LPSO) elongated particles within the magnesium matrix. At low temperature and high strain rates, their creep behavior shows a high stress exponent ( n  = 11) and high activation energy. Alloys behave as a metal matrix composite where the magnesium matrix transfers part of its load to the LPSO phase. At high-temperature and/or low stresses, creep is controlled by nonbasal dislocation slip. At intermediate and high strain rates at 673 K (400 °C) and at intermediate strain rates between 623 K and 673 K (350 °C and 400 °C), the extruded alloys show superplastic deformation with elongations to failure higher than 200 pct. Cracking of coarse LPSO second-phase particles and their subsequent distribution in the magnesium matrix take place during superplastic deformation, preventing magnesium grain growth.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1628-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-06, Vol.44 (6), p.2869-2883
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1330872410
source SpringerLink Journals
subjects Alloys
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Exact sciences and technology
Extrusion
High temperature
Materials Science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metallurgy
Metals. Metallurgy
Microstructure
Nanotechnology
Structural Materials
Surfaces and Interfaces
Thin Films
title High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Mechanical%20Behavior%20of%20Extruded%20Mg-Y-Zn%20Alloy%20Containing%20LPSO%20Phases&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=O%C3%B1orbe,%20Elvira&rft.date=2013-06-01&rft.volume=44&rft.issue=6&rft.spage=2869&rft.epage=2883&rft.pages=2869-2883&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1628-8&rft_dat=%3Cproquest_cross%3E2949711161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330872410&rft_id=info:pmid/&rfr_iscdi=true