Testing the Number of IGS Stations Required for Accurate Alignment of the Thai GPS Network and ITRF2005 Using the Gipsy Software

Since its introduction in 1990s, the GPS Precise Point Positioning (PPP) technique has been widely used for many high precision positioning applications such as the study of tectonic plate motion, establishment of national and regional reference frames and so on. Among the GPS PPP software packages,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial satellites 2013-01, Vol.48 (1), p.1-13
Hauptverfasser: Satirapod, Chalermchon, Payakleard, Punlop, Simons, Wim J.F., Kriengkraiwasin, Somchai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since its introduction in 1990s, the GPS Precise Point Positioning (PPP) technique has been widely used for many high precision positioning applications such as the study of tectonic plate motion, establishment of national and regional reference frames and so on. Among the GPS PPP software packages, the GIPSY-OASIS II software package is the one of the most popular software package used by many research institutes worldwide. The processing of GPS data with the GIPSY-OASIS II software requires three main steps. The first step is to compute a daily GPS solution for each station and the second step is to combine daily GPS solutions into a multi-day averaged solution. The final step is to transform these multi-day averaged solutions into the International Terrestrial Reference Frame (ITRF) coordinate solution and this step generally requires the use of available International GNSS service (IGS) stations to compute the required transformation parameters. In order to obtain high precision ITRF coordinate solutions, an investigation on a selection of IGS stations used for aligning the multi-day averaged solution into ITRF is therefore needed. This study aims to investigate the effect of number of IGS stations used for aligning the multi-day averaged solutions into the final ITRF coordinate solution in Thai region. Data from two different GPS campaigns (with epochs before and after the 2004 Sumatra- Andaman earthquake) measured by the Royal Thai Survey Department (RTSD) were used in this investigation. By varying the number of IGS station used in the alignment step, results indicate that the use of at least 16 IGS stations in the alignment process can produce reliable and accurate ITRF solutions especially those impacted by the large earthquake.
ISSN:0208-841X
1509-3859
2083-6104
DOI:10.2478/arsa-2013-0001