Gaussian Bare-Bones Differential Evolution
Differential evolution (DE) is a well-known algorithm for global optimization over continuous search spaces. However, choosing the optimal control parameters is a challenging task because they are problem oriented. In order to minimize the effects of the control parameters, a Gaussian bare-bones DE...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2013-04, Vol.43 (2), p.634-647 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential evolution (DE) is a well-known algorithm for global optimization over continuous search spaces. However, choosing the optimal control parameters is a challenging task because they are problem oriented. In order to minimize the effects of the control parameters, a Gaussian bare-bones DE (GBDE) and its modified version (MGBDE) are proposed which are almost parameter free. To verify the performance of our approaches, 30 benchmark functions and two real-world problems are utilized. Conducted experiments indicate that the MGBDE performs significantly better than, or at least comparable to, several state-of-the-art DE variants and some existing bare-bones algorithms. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TSMCB.2012.2213808 |