Gaussian Bare-Bones Differential Evolution

Differential evolution (DE) is a well-known algorithm for global optimization over continuous search spaces. However, choosing the optimal control parameters is a challenging task because they are problem oriented. In order to minimize the effects of the control parameters, a Gaussian bare-bones DE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2013-04, Vol.43 (2), p.634-647
Hauptverfasser: Hui Wang, Rahnamayan, S., Hui Sun, Omran, M. G. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differential evolution (DE) is a well-known algorithm for global optimization over continuous search spaces. However, choosing the optimal control parameters is a challenging task because they are problem oriented. In order to minimize the effects of the control parameters, a Gaussian bare-bones DE (GBDE) and its modified version (MGBDE) are proposed which are almost parameter free. To verify the performance of our approaches, 30 benchmark functions and two real-world problems are utilized. Conducted experiments indicate that the MGBDE performs significantly better than, or at least comparable to, several state-of-the-art DE variants and some existing bare-bones algorithms.
ISSN:2168-2267
2168-2275
DOI:10.1109/TSMCB.2012.2213808