On the Choice Number of Packings

In this note, we show that for positive integers s and k, there is a function D(s,k) such that every t‐(v,k,λ) packing with at least D(s,k)λk−t2t−2vv−2t−2/k−2t−2 edges, 2≤t≤k−1, has choice number greater than s. Consequently, for integers s, k, t, and λ there is a v0(s,k,t,λ) such that every t‐(v,k,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2012-11, Vol.20 (11), p.504-507
Hauptverfasser: Omidi, G. R., Shahsiah, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we show that for positive integers s and k, there is a function D(s,k) such that every t‐(v,k,λ) packing with at least D(s,k)λk−t2t−2vv−2t−2/k−2t−2 edges, 2≤t≤k−1, has choice number greater than s. Consequently, for integers s, k, t, and λ there is a v0(s,k,t,λ) such that every t‐(v,k,λ) design with v>v0(s,k,t,λ) has choice number greater than s. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 504‐507, 2012
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.21299