On the Choice Number of Packings
In this note, we show that for positive integers s and k, there is a function D(s,k) such that every t‐(v,k,λ) packing with at least D(s,k)λk−t2t−2vv−2t−2/k−2t−2 edges, 2≤t≤k−1, has choice number greater than s. Consequently, for integers s, k, t, and λ there is a v0(s,k,t,λ) such that every t‐(v,k,...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2012-11, Vol.20 (11), p.504-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we show that for positive integers s and k, there is a function D(s,k) such that every t‐(v,k,λ) packing with at least D(s,k)λk−t2t−2vv−2t−2/k−2t−2 edges, 2≤t≤k−1, has choice number greater than s. Consequently, for integers s, k, t, and λ there is a v0(s,k,t,λ) such that every t‐(v,k,λ) design with v>v0(s,k,t,λ) has choice number greater than s. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 504‐507, 2012 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.21299 |