An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs

Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2013-06, Vol.73 (2), p.127-145
Hauptverfasser: Sárközy, Gábor N., Selkow, Stanley M., Song, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 2
container_start_page 127
container_title Journal of graph theory
container_volume 73
creator Sárközy, Gábor N.
Selkow, Stanley M.
Song, Fei
description Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k‐regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013
doi_str_mv 10.1002/jgt.21661
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1321923457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932289071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-c34a5b6373b3f389fa699cce334c209706424cbba61817752558a95c8dfc81733</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKBP7DEOdSP2E6OpYLQBw9BaREXy3GdNqWNi-MA_XtMi7jsrkYzO6MB4ByjS4wQ6Szn_pJgzvEBaGGUighhnByCFqI8jlJE4mNwUtdLFGCGkhZ47lawv944-2lm8Mo21QwW1sGJcd58w0flfOlLW9Uw38KerSqjfSDe2crqhbNr5UsNh9GTmTcr5WDm1GZRn4KjQq1qc_a32-Dl5nrcu41GD1m_1x1Fmgb7MGPFck4FzWlBk7RQPE21NpTGmoToiMck1nmuOE6wEIwwlqiU6WRW6ABQ2gYX-78h_kdjai-XtnFVsJSYEpwSGjMRWJ0966tcma3cuHKt3FZiJH8Lk6EwuStMDrLx7giKaK8o61DCv0K5d8kFFUxO7zOZTRP89jqYyCH9ATxNbb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321923457</pqid></control><display><type>article</type><title>An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs</title><source>Wiley Blackwell Single Titles</source><creator>Sárközy, Gábor N. ; Selkow, Stanley M. ; Song, Fei</creator><creatorcontrib>Sárközy, Gábor N. ; Selkow, Stanley M. ; Song, Fei</creatorcontrib><description>Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k‐regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.21661</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Graph theory ; regulatory lemma ; Studies ; vertex partitions</subject><ispartof>Journal of graph theory, 2013-06, Vol.73 (2), p.127-145</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-c34a5b6373b3f389fa699cce334c209706424cbba61817752558a95c8dfc81733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.21661$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.21661$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sárközy, Gábor N.</creatorcontrib><creatorcontrib>Selkow, Stanley M.</creatorcontrib><creatorcontrib>Song, Fei</creatorcontrib><title>An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k‐regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013</description><subject>Graph theory</subject><subject>regulatory lemma</subject><subject>Studies</subject><subject>vertex partitions</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKBP7DEOdSP2E6OpYLQBw9BaREXy3GdNqWNi-MA_XtMi7jsrkYzO6MB4ByjS4wQ6Szn_pJgzvEBaGGUighhnByCFqI8jlJE4mNwUtdLFGCGkhZ47lawv944-2lm8Mo21QwW1sGJcd58w0flfOlLW9Uw38KerSqjfSDe2crqhbNr5UsNh9GTmTcr5WDm1GZRn4KjQq1qc_a32-Dl5nrcu41GD1m_1x1Fmgb7MGPFck4FzWlBk7RQPE21NpTGmoToiMck1nmuOE6wEIwwlqiU6WRW6ABQ2gYX-78h_kdjai-XtnFVsJSYEpwSGjMRWJ0966tcma3cuHKt3FZiJH8Lk6EwuStMDrLx7giKaK8o61DCv0K5d8kFFUxO7zOZTRP89jqYyCH9ATxNbb4</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Sárközy, Gábor N.</creator><creator>Selkow, Stanley M.</creator><creator>Song, Fei</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope></search><sort><creationdate>201306</creationdate><title>An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs</title><author>Sárközy, Gábor N. ; Selkow, Stanley M. ; Song, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-c34a5b6373b3f389fa699cce334c209706424cbba61817752558a95c8dfc81733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Graph theory</topic><topic>regulatory lemma</topic><topic>Studies</topic><topic>vertex partitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sárközy, Gábor N.</creatorcontrib><creatorcontrib>Selkow, Stanley M.</creatorcontrib><creatorcontrib>Song, Fei</creatorcontrib><collection>Istex</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sárközy, Gábor N.</au><au>Selkow, Stanley M.</au><au>Song, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2013-06</date><risdate>2013</risdate><volume>73</volume><issue>2</issue><spage>127</spage><epage>145</epage><pages>127-145</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k‐regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.21661</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2013-06, Vol.73 (2), p.127-145
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_1321923457
source Wiley Blackwell Single Titles
subjects Graph theory
regulatory lemma
Studies
vertex partitions
title An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Bound%20for%20Vertex%20Partitions%20by%20Connected%20Monochromatic%20K-Regular%20Graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=S%C3%A1rk%C3%B6zy,%20G%C3%A1bor%20N.&rft.date=2013-06&rft.volume=73&rft.issue=2&rft.spage=127&rft.epage=145&rft.pages=127-145&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.21661&rft_dat=%3Cproquest_wiley%3E2932289071%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321923457&rft_id=info:pmid/&rfr_iscdi=true