An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs
Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochr...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2013-06, Vol.73 (2), p.127-145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improving a result of Sárközy and Selkow, we show that for all integers r,k≥2 there exists a constant n0=n0(r,k) such that if n≥n0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k‐regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.21661 |