On classification with missing data using rough-neuro-fuzzy systems
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are give...
Gespeichert in:
Veröffentlicht in: | International Journal of Applied Mathematics and Computer Science 2010-03, Vol.20 (1), p.55-67 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described. |
---|---|
ISSN: | 1641-876X 2083-8492 |
DOI: | 10.2478/v10006-010-0004-8 |