On classification with missing data using rough-neuro-fuzzy systems

The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Applied Mathematics and Computer Science 2010-03, Vol.20 (1), p.55-67
1. Verfasser: Nowicki, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
ISSN:1641-876X
2083-8492
DOI:10.2478/v10006-010-0004-8