The strong diachronous Muschelkalk/Keuper facies shift in the Central European Basin: implications from the type-section of the Erfurt Formation (Lower Keuper, Triassic) and basin-wide correlations
The transition from the shallow marine Upper Muschelkalk Sea to the Lower Keuper fluvial plain represents the most diachronous facies shift of the entire Germanic Triassic. The type-section of the fluvial Lower Keuper (Erfurt Formation) is described in detail for the first time including biostratigr...
Gespeichert in:
Veröffentlicht in: | International journal of earth sciences : Geologische Rundschau 2013-04, Vol.102 (3), p.761-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transition from the shallow marine Upper Muschelkalk Sea to the Lower Keuper fluvial plain represents the most diachronous facies shift of the entire Germanic Triassic. The type-section of the fluvial Lower Keuper (Erfurt Formation) is described in detail for the first time including biostratigraphic dating of the Muschelkalk/Keuper boundary. The type-section is integrated into a NNE-SSW cross section through the Central European Basin, and the Muschelkalk/Keuper facies shift is constrained by high-resolution conodont and ceratite biostratigraphy. Thus, the fundamental changes in palaeogeography, shifts of facies belts and stratal pattern architecture are visualised. Forced by a rapid transgression from Tethyan waters, the shallow marine Upper Muschelkalk Sea attained its maximum flooding in the lower conodont zone 2 (
sequens/pulcher
to
philippi/robustus
zones). Subsequent slow continuous regression to the South was accompanied by step-by-step progradation of coastal to fluvial plain environments of the Lower Keuper, culminating in a fluvial plain extending to South Germany. Based on stratal patterns, an improved sequence-stratigraphic interpretation for the Upper Muschelkalk/Lower Keuper interval is suggested. In combination with biostratigraphic arguments, the new sequence-stratigraphy points to a revised correlation of this interval within the Tethyan Triassic, incorporating the positions of the Anisian/Ladinian and Fassanian/Longobardian boundaries. |
---|---|
ISSN: | 1437-3254 1437-3262 |
DOI: | 10.1007/s00531-012-0823-y |