method to generate and use as-applied surfaces to evaluate variable-rate fertilizer applications
Variable-rate technology (VRT) has been used by farmers in an attempt to better match inputs to local growing conditions. In theory, VRT minimizes over- and under-application of inputs. However, the limitations and errors of this technology have not been well documented. Further, standard methods fo...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2013-04, Vol.14 (2), p.184-200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variable-rate technology (VRT) has been used by farmers in an attempt to better match inputs to local growing conditions. In theory, VRT minimizes over- and under-application of inputs. However, the limitations and errors of this technology have not been well documented. Further, standard methods for quantifying the application accuracy using VRT do not currently exist, limiting practitioners’ knowledge on performance. Therefore, a spatial data model was developed to generate “as-applied” surfaces as a means to evaluate VRT performance of two applicators. The spatial data model uses geographic information system functionality to merge applicator descriptive patterns with a field application file to generate an ‘as-applied’ surface map representing not only the actual deposition of granular fertilizer but more importantly spatial distribution. Field data were collected and used to validate the spatial model. Comparisons between the actual and predicted application rates indicated moderate to good correlations (0.62 |
---|---|
ISSN: | 1385-2256 1573-1618 |
DOI: | 10.1007/s11119-012-9286-1 |