Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation
Carriers exert a crucial influence on the texture and adsorption properties of the Cu–ZnO system. Enhancing surface area and availability of adsorption sites, the zirconia carrier confers superior process performance on Cu–ZnO/ZrO2 catalysts. [Display omitted] ► The reactivity of Al2O3-, ZrO2-, and...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2013-04, Vol.300, p.141-151 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carriers exert a crucial influence on the texture and adsorption properties of the Cu–ZnO system. Enhancing surface area and availability of adsorption sites, the zirconia carrier confers superior process performance on Cu–ZnO/ZrO2 catalysts. [Display omitted]
► The reactivity of Al2O3-, ZrO2-, and CeO2-supported Cu–ZnO systems is assessed. ► Oxide carrier controls catalyst texture and metal surface exposure (MSA). ► Oxide carriers affect adsorption pattern and functionality of Cu–ZnO system. ► Methanol is a primary reaction product at low temperature and high pressure. ► Textural and chemical effects explain the better performance of Cu-ZnO/ZrO2 system.
Physicochemical properties and CO2-to-methanol hydrogenation functionality (TR, 453–513K; PR, 0.1–5.0MPa) of Al2O3-, ZrO2-, and CeO2-supported Cu–ZnO catalysts are systematically addressed. Carriers control texture and metal surface exposure (MSA), while characterization of steady-state catalysts shows extensive CO2 and H2 coverage regardless of MSA, proving a crucial influence of the oxide carrier on the adsorption properties of the Cu–ZnO system. The kinetic dependence on pCO2 and pH2 confirms that dioxo-methylene intermediate hydrogenation is the rate-determining step (r.d.s.) at P0.1MPa. The influence of flow rate on selectivity pattern discloses that CH3OH is the primary reaction product at T |
---|---|
ISSN: | 0021-9517 1090-2694 |
DOI: | 10.1016/j.jcat.2012.12.019 |