An almost sure central limit theorem of products of partial sums for [rho]^sup -^-mixing sequences
Let {X ^sub n^, n >= 1} be a strictly stationary [rho] ^sup -^-mixing sequence of positive random variables with EX ^sub 1^ = [mu] > 0 and Var(X ^sub 1^) = [sigma] ^sup 2^ < ∞. Denote [InlineEquation not available: see fulltext.] and [InlineEquation not available: see fulltext.] the coeffic...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2012-03, Vol.2012, p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {X ^sub n^, n >= 1} be a strictly stationary [rho] ^sup -^-mixing sequence of positive random variables with EX ^sub 1^ = [mu] > 0 and Var(X ^sub 1^) = [sigma] ^sup 2^ < ∞. Denote [InlineEquation not available: see fulltext.] and [InlineEquation not available: see fulltext.] the coefficient of variation. Under suitable conditions, by the central limit theorem of weighted sums and the moment inequality we show that [Equation not available: see fulltext.] where [InlineEquation not available: see fulltext.] with [InlineEquation not available: see fulltext.] is the distribution function of the random variable [InlineEquation not available: see fulltext.], and [InlineEquation not available: see fulltext.] is a standard normal random variable. MR(2000) Subject Classification: 60F15.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1025-5834 1029-242X |
DOI: | 10.1186/1029-242X-2012-51 |