Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants: e1002238

The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants"). Activity can be restored by second-site suppressor mutations ("rescue mutants"). This paper relates the functional activity of p53 cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2011-10, Vol.7 (10)
Hauptverfasser: Demir, Özlem, Baronio, Roberta, Salehi, Faezeh, Wassman, Christopher D, Hall, Linda, Hatfield, G Wesley, Chamberlin, Richard, Kaiser, Peter, Lathrop, Richard H, Amaro, Rommie E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants"). Activity can be restored by second-site suppressor mutations ("rescue mutants"). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured δδG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.
ISSN:1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1002238