Interval estimation of population means under unknown but bounded probabilities of sample selection

Applying concepts from partial identification to the domain of finite population sampling, we propose a method for interval estimation of a population mean when the probabilities of sample selection lie within a posited interval. The interval estimate is derived from sharp bounds on the Hajek (1971)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2013-03, Vol.100 (1), p.235-240
Hauptverfasser: ARONOW, PETER M., LEE, DONALD K. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying concepts from partial identification to the domain of finite population sampling, we propose a method for interval estimation of a population mean when the probabilities of sample selection lie within a posited interval. The interval estimate is derived from sharp bounds on the Hajek (1971) estimator of the population mean. We demonstrate the method's utility for sensitivity analysis by applying it to a sample of needles collected as part of a syringe tracking and testing programme in New Haven, Connecticut.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/ass064