A Primer on Regression Methods for Decoding cis-Regulatory Logic: e1000269

Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4]-[6]--in particular, by integrating sequence data with mRNA expression profiles. [...]the combinatorial nature of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2009-01, Vol.5 (1)
Hauptverfasser: Das, Debopriya, Pellegrini, Matteo, Gray, Joe W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4]-[6]--in particular, by integrating sequence data with mRNA expression profiles. [...]the combinatorial nature of gene regulation is difficult to explicitly model in this framework. [...]in many applications of this approach, expression data from multiple conditions are necessary to obtain reliable predictions. [...]although most regression methods are used to model the observed changes in gene expression between a pair of conditions, recently this methodology has been extended to include information from multiple conditions as well [29].
ISSN:1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000269