Distributional Identities of Beta and Chi-Squared Variates: A Geometrical Interpretation
A bivariate change of variable is proposed that elucidates the major distributional identities involving the two beta distributions and the chi-squared distribution. These identities are then seen to be the consequence of simple trigonometric relationships. The extension to n dimensions clarifies fu...
Gespeichert in:
Veröffentlicht in: | The American statistician 1992-05, Vol.46 (2), p.117-120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bivariate change of variable is proposed that elucidates the major distributional identities involving the two beta distributions and the chi-squared distribution. These identities are then seen to be the consequence of simple trigonometric relationships. The extension to n dimensions clarifies further identities. There are, however, identities that seem not to fit into this scheme; three of these are reported. |
---|---|
ISSN: | 0003-1305 1537-2731 |
DOI: | 10.1080/00031305.1992.10475864 |