Determinacy and extended sharp functions on the reals, Part II: obtaining sharps from determinacy
For several partial sharp functions # on the reals, we characterize in terms of determinacy, the existence of indiscernibles for several inner models of “#( r) exists for every real r”. Let # 1 0=1# 1 0 be the identity function on the reals. Inductively define the partial sharp function, β# 1 γ+1, o...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 1992-07, Vol.58 (1), p.1-28 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For several partial sharp functions # on the reals, we characterize in terms of determinacy, the existence of indiscernibles for several inner models of “#(
r) exists for every real
r”.
Let #
1
0=1#
1
0 be the identity function on the reals. Inductively define the partial sharp function,
β#
1
γ+1, on the reals so that #
1
γ+1 (
r)=1#
1
γ+1(
r) codes indiscernibles for
L(
r) [#
1
1, #
1
2,…, #
1
γ] and (
β+1)#
1
γ+1(
r)=#
1
γ+1(
β#
1
γ+1(
r)). We sho w that the existence of
β#
1
γ(0) follows from the determinacy of (γ*
Π
0
1, (
β−1)*
Σ
0
1)
*
+ games (whose definition we provide). Part I proves the converse. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/0168-0072(92)90032-U |