Determinacy and extended sharp functions on the reals, Part II: obtaining sharps from determinacy

For several partial sharp functions # on the reals, we characterize in terms of determinacy, the existence of indiscernibles for several inner models of “#( r) exists for every real r”. Let # 1 0=1# 1 0 be the identity function on the reals. Inductively define the partial sharp function, β# 1 γ+1, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 1992-07, Vol.58 (1), p.1-28
1. Verfasser: DuBose, Derrick Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For several partial sharp functions # on the reals, we characterize in terms of determinacy, the existence of indiscernibles for several inner models of “#( r) exists for every real r”. Let # 1 0=1# 1 0 be the identity function on the reals. Inductively define the partial sharp function, β# 1 γ+1, on the reals so that # 1 γ+1 ( r)=1# 1 γ+1( r) codes indiscernibles for L( r) [# 1 1, # 1 2,…, # 1 γ] and ( β+1)# 1 γ+1( r)=# 1 γ+1( β# 1 γ+1( r)). We sho w that the existence of β# 1 γ(0) follows from the determinacy of (γ* Π 0 1, ( β−1)* Σ 0 1) * + games (whose definition we provide). Part I proves the converse.
ISSN:0168-0072
DOI:10.1016/0168-0072(92)90032-U