The monadic second-order logic of graphs VIII: Orientations
In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical n...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 1995-03, Vol.72 (2), p.103-143 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 103 |
container_title | Annals of pure and applied logic |
container_volume | 72 |
creator | Courcelle, Bruno |
description | In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories. |
doi_str_mv | 10.1016/0168-0072(95)94698-V |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1303275431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016800729594698V</els_id><sourcerecordid>1303275431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxXNQsFa_gYcFL3pYTTbJblZBkOKfhUIvda8hm0nalHZTk23Bb29qxaOHYWB47w3vh9AVwXcEk_I-jcgxroqbmt_WrKxF3p6g0d_5DJ3HuMIYc1bREXqcL0228b0Cp7NotO8h9wFMyNZ-kU7eZougtsuYtU3TPGSz4Ew_qMH5Pl6gU6vW0Vz-7jH6eH2ZT97z6eytmTxPc015vc87IBRKRTowtoROWSpIYYBZ0ZWVxQUVGjrBaFkwoB2xoiosWI5poaE2mNMxuj7mboP_3Jk4yJXfhT69lIQmWcUZJUnFjiodfIzBWLkNbqPClyRYHtDIAwN5YCBrLn_QyDbZno42kxrsnQky6lRRG3DB6EGCd_8HfANaw2xI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303275431</pqid></control><display><type>article</type><title>The monadic second-order logic of graphs VIII: Orientations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Periodicals Index Online</source><creator>Courcelle, Bruno</creator><creatorcontrib>Courcelle, Bruno</creatorcontrib><description>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/0168-0072(95)94698-V</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><ispartof>Annals of pure and applied logic, 1995-03, Vol.72 (2), p.103-143</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</citedby><cites>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016800729594698V$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27846,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Courcelle, Bruno</creatorcontrib><title>The monadic second-order logic of graphs VIII: Orientations</title><title>Annals of pure and applied logic</title><description>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</description><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kE9LAzEQxXNQsFa_gYcFL3pYTTbJblZBkOKfhUIvda8hm0nalHZTk23Bb29qxaOHYWB47w3vh9AVwXcEk_I-jcgxroqbmt_WrKxF3p6g0d_5DJ3HuMIYc1bREXqcL0228b0Cp7NotO8h9wFMyNZ-kU7eZougtsuYtU3TPGSz4Ew_qMH5Pl6gU6vW0Vz-7jH6eH2ZT97z6eytmTxPc015vc87IBRKRTowtoROWSpIYYBZ0ZWVxQUVGjrBaFkwoB2xoiosWI5poaE2mNMxuj7mboP_3Jk4yJXfhT69lIQmWcUZJUnFjiodfIzBWLkNbqPClyRYHtDIAwN5YCBrLn_QyDbZno42kxrsnQky6lRRG3DB6EGCd_8HfANaw2xI</recordid><startdate>19950331</startdate><enddate>19950331</enddate><creator>Courcelle, Bruno</creator><general>Elsevier B.V</general><general>North-Holland</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IZSXY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19950331</creationdate><title>The monadic second-order logic of graphs VIII: Orientations</title><author>Courcelle, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courcelle, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 30</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courcelle, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monadic second-order logic of graphs VIII: Orientations</atitle><jtitle>Annals of pure and applied logic</jtitle><date>1995-03-31</date><risdate>1995</risdate><volume>72</volume><issue>2</issue><spage>103</spage><epage>143</epage><pages>103-143</pages><issn>0168-0072</issn><abstract>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-0072(95)94698-V</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-0072 |
ispartof | Annals of pure and applied logic, 1995-03, Vol.72 (2), p.103-143 |
issn | 0168-0072 |
language | eng |
recordid | cdi_proquest_journals_1303275431 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Periodicals Index Online |
title | The monadic second-order logic of graphs VIII: Orientations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monadic%20second-order%20logic%20of%20graphs%20VIII:%20Orientations&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Courcelle,%20Bruno&rft.date=1995-03-31&rft.volume=72&rft.issue=2&rft.spage=103&rft.epage=143&rft.pages=103-143&rft.issn=0168-0072&rft_id=info:doi/10.1016/0168-0072(95)94698-V&rft_dat=%3Cproquest_cross%3E1303275431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303275431&rft_id=info:pmid/&rft_els_id=016800729594698V&rfr_iscdi=true |