The monadic second-order logic of graphs VIII: Orientations

In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 1995-03, Vol.72 (2), p.103-143
1. Verfasser: Courcelle, Bruno
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 103
container_title Annals of pure and applied logic
container_volume 72
creator Courcelle, Bruno
description In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.
doi_str_mv 10.1016/0168-0072(95)94698-V
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1303275431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016800729594698V</els_id><sourcerecordid>1303275431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxXNQsFa_gYcFL3pYTTbJblZBkOKfhUIvda8hm0nalHZTk23Bb29qxaOHYWB47w3vh9AVwXcEk_I-jcgxroqbmt_WrKxF3p6g0d_5DJ3HuMIYc1bREXqcL0228b0Cp7NotO8h9wFMyNZ-kU7eZougtsuYtU3TPGSz4Ew_qMH5Pl6gU6vW0Vz-7jH6eH2ZT97z6eytmTxPc015vc87IBRKRTowtoROWSpIYYBZ0ZWVxQUVGjrBaFkwoB2xoiosWI5poaE2mNMxuj7mboP_3Jk4yJXfhT69lIQmWcUZJUnFjiodfIzBWLkNbqPClyRYHtDIAwN5YCBrLn_QyDbZno42kxrsnQky6lRRG3DB6EGCd_8HfANaw2xI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303275431</pqid></control><display><type>article</type><title>The monadic second-order logic of graphs VIII: Orientations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Periodicals Index Online</source><creator>Courcelle, Bruno</creator><creatorcontrib>Courcelle, Bruno</creatorcontrib><description>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/0168-0072(95)94698-V</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><ispartof>Annals of pure and applied logic, 1995-03, Vol.72 (2), p.103-143</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</citedby><cites>FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016800729594698V$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27846,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Courcelle, Bruno</creatorcontrib><title>The monadic second-order logic of graphs VIII: Orientations</title><title>Annals of pure and applied logic</title><description>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</description><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kE9LAzEQxXNQsFa_gYcFL3pYTTbJblZBkOKfhUIvda8hm0nalHZTk23Bb29qxaOHYWB47w3vh9AVwXcEk_I-jcgxroqbmt_WrKxF3p6g0d_5DJ3HuMIYc1bREXqcL0228b0Cp7NotO8h9wFMyNZ-kU7eZougtsuYtU3TPGSz4Ew_qMH5Pl6gU6vW0Vz-7jH6eH2ZT97z6eytmTxPc015vc87IBRKRTowtoROWSpIYYBZ0ZWVxQUVGjrBaFkwoB2xoiosWI5poaE2mNMxuj7mboP_3Jk4yJXfhT69lIQmWcUZJUnFjiodfIzBWLkNbqPClyRYHtDIAwN5YCBrLn_QyDbZno42kxrsnQky6lRRG3DB6EGCd_8HfANaw2xI</recordid><startdate>19950331</startdate><enddate>19950331</enddate><creator>Courcelle, Bruno</creator><general>Elsevier B.V</general><general>North-Holland</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IZSXY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19950331</creationdate><title>The monadic second-order logic of graphs VIII: Orientations</title><author>Courcelle, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359v-bd13d6a1bdef6dbaf3812ed4f8b67f0238cdb843624d3b1f872fdf5032cd9e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courcelle, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 30</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courcelle, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monadic second-order logic of graphs VIII: Orientations</atitle><jtitle>Annals of pure and applied logic</jtitle><date>1995-03-31</date><risdate>1995</risdate><volume>72</volume><issue>2</issue><spage>103</spage><epage>143</epage><pages>103-143</pages><issn>0168-0072</issn><abstract>In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-0072(95)94698-V</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-0072
ispartof Annals of pure and applied logic, 1995-03, Vol.72 (2), p.103-143
issn 0168-0072
language eng
recordid cdi_proquest_journals_1303275431
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Periodicals Index Online
title The monadic second-order logic of graphs VIII: Orientations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monadic%20second-order%20logic%20of%20graphs%20VIII:%20Orientations&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Courcelle,%20Bruno&rft.date=1995-03-31&rft.volume=72&rft.issue=2&rft.spage=103&rft.epage=143&rft.pages=103-143&rft.issn=0168-0072&rft_id=info:doi/10.1016/0168-0072(95)94698-V&rft_dat=%3Cproquest_cross%3E1303275431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303275431&rft_id=info:pmid/&rft_els_id=016800729594698V&rfr_iscdi=true