The monadic second-order logic of graphs VIII: Orientations
In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical n...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 1995-03, Vol.72 (2), p.103-143 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/0168-0072(95)94698-V |