The monadic second-order logic of graphs VIII: Orientations

In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 1995-03, Vol.72 (2), p.103-143
1. Verfasser: Courcelle, Bruno
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first spanning tree. Applications are given to the characterization of the classes of graphs and hypergraphs having decidable monadic theories.
ISSN:0168-0072
DOI:10.1016/0168-0072(95)94698-V