Borel partitions of infinite subtrees of a perfect tree

Louveau, A., S. Shelah and B. Veličković, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 (1993) 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 1993-09, Vol.63 (3), p.271-281
Hauptverfasser: Louveau, A., Shelah, S., Veličković, B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Louveau, A., S. Shelah and B. Veličković, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 (1993) 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type τ belong to the same class. This result simultaneously generalizes the partition theorems of Galvin-Prikry and Galvin-Blass. The key ingredient of the proof is the theorem of Halpern-Laüchli on partitions of products of perfect trees.
ISSN:0168-0072
DOI:10.1016/0168-0072(93)90151-3