Borel partitions of infinite subtrees of a perfect tree
Louveau, A., S. Shelah and B. Veličković, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 (1993) 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have typ...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 1993-09, Vol.63 (3), p.271-281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Louveau, A., S. Shelah and B. Veličković, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 (1993) 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree
T which have type τ is partitioned into two Borel classes then there is a perfect subtree
S of
T such that all subtrees of
S of type τ belong to the same class. This result simultaneously generalizes the partition theorems of Galvin-Prikry and Galvin-Blass. The key ingredient of the proof is the theorem of Halpern-Laüchli on partitions of products of perfect trees. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/0168-0072(93)90151-3 |