When is arithmetic possible?
When a structure or class of structures admits an unbounded induction, we can do arithmetic on the stages of that induction: if only bounded inductions are admitted, then clearly each inductively definable relation can be defined using a finite explicit expression. Is the converse true? We examine e...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 1990-11, Vol.50 (1), p.29-51 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When a structure or class of structures admits an unbounded induction, we can do arithmetic on the stages of that induction: if only bounded inductions are admitted, then clearly each inductively definable relation can be defined using a finite explicit expression. Is the converse true? We examine evidence that the converse is true, in positive elementary induction (where explicit = elementary). We present a stronger conjecture involving the language
L consisting of all
L
∞ω formulas with a finite number of variables, and examine a combinatorial property equivalent to “all
L-definable relations are elementary”. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/0168-0072(90)90053-5 |