When is arithmetic possible?

When a structure or class of structures admits an unbounded induction, we can do arithmetic on the stages of that induction: if only bounded inductions are admitted, then clearly each inductively definable relation can be defined using a finite explicit expression. Is the converse true? We examine e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 1990-11, Vol.50 (1), p.29-51
1. Verfasser: McColm, Gregory L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a structure or class of structures admits an unbounded induction, we can do arithmetic on the stages of that induction: if only bounded inductions are admitted, then clearly each inductively definable relation can be defined using a finite explicit expression. Is the converse true? We examine evidence that the converse is true, in positive elementary induction (where explicit = elementary). We present a stronger conjecture involving the language L consisting of all L ∞ω formulas with a finite number of variables, and examine a combinatorial property equivalent to “all L-definable relations are elementary”.
ISSN:0168-0072
DOI:10.1016/0168-0072(90)90053-5