A Central Limit Theorem for Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a technique for Monte Carlo integration, due to McKay, Conover and Beckman. M. Stein proved that LHS integrals have smaller variance than independent and identically distributed Monte Carlo integration, the extent of the variance reduction depending on the extent to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1992-01, Vol.54 (2), p.541-551
1. Verfasser: Owen, Art B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Latin hypercube sampling (LHS) is a technique for Monte Carlo integration, due to McKay, Conover and Beckman. M. Stein proved that LHS integrals have smaller variance than independent and identically distributed Monte Carlo integration, the extent of the variance reduction depending on the extent to which the integrand is additive. We extend Stein's work to prove a central limit theorem. Variance estimation methods for nonparametric regression can be adapted to provide N1/2-consistent estimates of the asymptotic variance in LHS. Moreover the skewness can be estimated at this rate. The variance reduction may be explained in terms of certain control variates that cannot be directly measured. We also show how to combine control variates with LHS. Finally we show how these results lead to a frequentist approach to computer experimentation.
ISSN:0035-9246
1369-7412
2517-6161
1467-9868
DOI:10.1111/j.2517-6161.1992.tb01895.x