Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components

A common objective in exploratory multivariate analysis is to identify a subset of the variables which conveys the main features of the whole sample. Analysis of a well-known multivariate data set shows that methods currently available for selecting variables in principal component analysis may not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Statistics 1987-01, Vol.36 (1), p.22-33
1. Verfasser: Krzanowski, W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common objective in exploratory multivariate analysis is to identify a subset of the variables which conveys the main features of the whole sample. Analysis of a well-known multivariate data set shows that methods currently available for selecting variables in principal component analysis may not lead to an appropriate subset. A new selection method, based on Procrustes Analysis, is proposed and shown to lead to a better subset for the data first analysed. Some supporting Monte Carlo results are presented, and implications for other multivariate techniques are briefly discussed.
ISSN:0035-9254
1467-9876
DOI:10.2307/2347842