Automatic Lag Selection in Covariance Matrix Estimation

We propose a nonparametric method for automatically selecting the number of autocovariances to use in computing a heteroskedasticity and autocorrelation consistent covariance matrix. For a given kernel for weighting the autocovariances, we prove that our procedure is asymptotically equivalent to one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 1994-10, Vol.61 (4), p.631-653
Hauptverfasser: Newey, Whitney K., West, Kenneth D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a nonparametric method for automatically selecting the number of autocovariances to use in computing a heteroskedasticity and autocorrelation consistent covariance matrix. For a given kernel for weighting the autocovariances, we prove that our procedure is asymptotically equivalent to one that is optimal under a mean-squared error loss function. Monte Carlo simulations suggest that our procedure performs tolerably well, although it does result in size distortions.
ISSN:0034-6527
1467-937X
DOI:10.2307/2297912